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Skew-symmetric tensor-spinor formulation of the 
spin field 
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t Laboratoire de Physique Theorique, Institut Henri Poincare, Paris, France 
3 Department of Physics, Queen Mary College, London El 4NS, UK 

MS received 1 November 1972 

Abstract. The formulation of a field theory for a spin 3 particle is sought in terms of a 
skew-symmetric tensor-spinor. If the wavefunction transforms irreducibly under the rota- 
tion group, the lagrangian density is not hermitian, but if it transforms as the direct sum of 
two spin 3 components, this defect is removed. Furthermore, when minimal coupling to 
the electromagnetic field is introduced. in the latter case, propagation -remains causal, so 
that some improvement over the usual vector-spinor theory is achieved. 

1. Introduction 

The anomalies which appear in the field theory of higher spin particles in the presence 
of an interaction have been discussed by many authors (Johnson and Sudarshan 1961, 
Vel0 and Zwanziger 1969a, b, Schroer et al 1970, Minkowski and Seiler 1971, Shamaly 
and Capri 1972). Although these defects may be due to an inadequate formulation of 
the interaction Lagrangian, it is felt that the electromagnetic interaction is well enough 
understood to enable one to construct a suitable interaction term. But, in the case of 
the Rarita-Schwinger field for a spin i particle minimally coupled to  the electromagnetic 
field, it was shown by Johnson and Sudarshan( 1961) that the equal time anticommutation 
relations between fields are not positive definite, and by Vel0 and Zwanziger (1969a) 
that the velocity of propagation of wavefronts is greater than the speed oflight. Shamaly 
and Capri (1972) show that the problem is not resolved by the addition of (non-minimal) 
magnetic moment terms to the interaction Lagrangian. 

In this article we derive alternative spin 3 field equations in which the wavefunction 
is chosen to be an antisymmetric tensor-spinor. This particular choice of wavefunction 
is suggested by the fact that tensor-spinor equations may be obtained via the spin 3 
Bargmann-Wigner equations (Lurie 1968). To derive the Euler-Lagrange equations 
we use the method recently introduced by Aurilia and Umezawa (1967, 1969) which 
enables us to obtain, from a single wave equation, both the equation of motion and the 
necessary subsidiary conditions, including the antisymmetric property of the wave- 
function. 

In 0 2 the spin projection operators which resolve the identity in the space of second 
rank tensor-spinor wavefunctions are constructed. The antisymmetric part is examined 
in 4 3, and three formulations of spin are worked out using the projectors. In two of 
these formulations the wavefunctions transform irreducibly under the action of the 
Poincare group, corresponding to a unique mass and spin, but the corresponding 
lagrangian densities are not hermitian. The third transforms reducibly as the direct 
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sum of the two irreducible spin 3 components having the same mass. In this case the 
lagrangian density is hermitian, and the subsidiary conditions serve to eliminate the 
two spin 4 parts of the wavefunction. 

Because of the defects in these theories (non-hermiticity or reducibility) they do  not 
present a viable alternative to  the Rarita-Schwinger theory for a free spin 3 particle. 
However, the significance of our analysis appears in 0 4 where we show for the case of 
the hermitian lagrangian density that no additional difficulties arise when minimal 
coupling to  the electromagnetic field is introduced. It is demonstrated that the light 
cone is the only characteristic surface so that the requirements of causality are satisfied, 
that is, the speed of propagation is bounded by the speed of light. The calculation of 
the characteristic surface is carried out in a shock wave formalism (Stellmacher 1938, 
Madore and Tait 1973). 

2. Projection operators 

In this section we calculate the projection operators that project out of an arbitrary 
tensorspinor I):’ parts which transform irreducibly under spatial rotations. Under 
spatial rotations an arbitrary tensor-spinor trcinsforms according to the reducible 
representation 

0($)@4D($)@ 5D(i) .  

For each of these 10 irreducible representations D(s),  there is a projection operator 
Pi(s), s = $, 3, +, which projects an arbitrary tensor-spinor into the space ofthe irreducible 
representation D(s). To simplify the calculation of the projection operators we may 
resolve I);’ into a symmetric part and an antisymmetric part. The former transforms 
according to the representation 

D($)@ 2D(3) @ 3D(3) 

and the latter according to the representation 

2D(3)@ 2D(i). 

If we designate by Si(s)  and A,(s)  the projection operators associated with the symmetric 
and antisymmetric subspaces respectively, we have 

2 3 

s:; = s(+):; + 1 s&; + 1 sic+,:; 
i =  1 i =  1 

i =  1 i =  1 

where 

Following Aurilia and Umezawa, we construct the projection operators Si(s) and 
Ai(s)  by considering all possible products of the form 

[Di(s’)llP(s) (2.1) 

where the D,(s’), s’ = 0,1,2,  are the spin projection operators in the tensor subspace 
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which have been calculated elsewhere (Macfarlane and Tait 1972), and I is the identity 
operator in the spinor subspace. P(s), s = $,;, 3, projects the spin s part out of I&Y and 
is given by 

w- s'(s' + l)p2 
p(s)  = l! s(s + l)p2 - s'(s' + l)p2 

where 

P2 = PpPp 
and 

w =  - w  wp P 

= ;p2sa,sap - s,,sa~pyp* 

where wp is the Pauli-Lubanski pseudovector : 

w p  = $EpvapSVapP. 

Sap denotes the spin operator, that is, 

(S@)$ = (s;P):g; + (s",);g: + 3 g : g ; P  

(S;P): = i(g;gP" - g'pg!) 

2 - YPY") 

(2.4) 

(2.5) 

(2.6) 

where 

and 
- p P  = -Li 

(to simplify the notation we suppress the spinor index). 
We are now in a position to calculate the projection operators. From (2.2) we find 

w2-2 2 W + U  4 

40p4 
2P 16P P(3) = 

w2-'9 2w +'05 4 

- 15p4 
2 P  16  P P($) = 

w2-U 2w+525 4 

24p4 
2 P  16 P P(4) = 

(2.7) 

(2.9) 

Explicit expressions for P(s)  and hence for Ai(s)  using (2.1) are given in the Appendix. 
S($) = P(3) is the only symmetric projector which is exhibited since it may prove useful 
for the evaluation ofthe NTi2 contribution to nN scattering. The Feynman propagator is 

{(Y . P + W ( ~ ) > , Z  =m2 

p2 -m2 

3. Three tensor-spinor formulations of spin 3 
3.1. Irreducible cases 

By substituting the following expansion for a completely symmetric third rank spinor 

$.By = + 3qJxP$;v (3.1) 
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into the Bargmann-Wigner equations, where C is the charge conjugation matrix, II/: 
is a vector-spinor and t/.t;’ a skew-symmetric tensor-spinor, we can by expressing I/?‘ 
in terms of $”@, derive the following equations for I,+”’ : 

(y . p - m)$”’ = 0 

YcYv*pv = 0 (3.2) 

E ~ V a p p v * a P  = 0. 

A different expansion of the spinor 

= (Y,CL& +~Y5~,vc),,x:v (3.3) 

is valid since ySC,,C is also symmetric, and because of the relation 

we have that x is the dual of $. In this case the relevant equations are 

( y . p - m ) f ’ =  0 

P J ’ V  = 0 (3.4) 

Y , Y V X P V  = 0. 

I t  is easily checked that (3.2) and (3.4) considered in the rest frame lead to the correct 
number of degrees of freedom for a spin 3 particle. 

Using the method of Aurilia and Umezawa (1967,1969) we proceed to find a single 
lagrangian equation which will imply (3.4) (or (3.2)). The kernel A@) of the lagrangian 

9 = f‘vAu@x 
P V  a8 

is given by 

and the Klein-Gordan divisor by 

where a,,  i = 1,2,3,4, are non-vanishing constants. By choosing a, = a3 = a4 = - 1, 
we cancel all the singular terms (ie inverse powers of pz) in (3.5) except those of the form 

These terms may be removed by multiplying the kernel on the left by a non-singular 
matrix q which is made up of products of the form 

I + Ai(S)MAj(S’). (3.7) 

The matrix M may contain any possible combination of y”, gPv, cpVap,  p p ,  and t]  is deter- 
mined such that the singular terms generated by tj cancel those contained in A. w e  find 
that all terms of the form 

Ai(s)MAj(s‘) 

vanish if s # S I .  In addition, all non-vanishing terms of the form Ai(s)MAj(s) that 
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(3.7) contains products of the forms 

I+nlX,  I+n2Y,  I + n3Z,  I + n4Z’ 

where n,  = c i +  d i ( y .  p/m) .  We should also like to choose q so that the lagrangian 

9 = h w  
may be made hermitian. However, we find that it is not possible to eliminate the 
singular terms from the wave equation and, at  the same time, obtain a hermitian 
lagrangian for any choice, real or complex, of the parameters n , .  The singular terms 
will cancel if we multiply A by the matrix 

q =  ( I + c l y Y ) ( I + c 2 y z )  

- 
and put a, = a3 = a4 = c1 = - 1, c2 = - 2 .  If A = qA, the wave equation is then 
Ax = 0, that is, 

The Klein-Gordan divisor is given by d = d q - ’ ,  that is, 
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+qg’ P 1 
6 U? ~ p ~ ~ ~ ~ v ~ u ~ ~ ~ ~ v i ’ p ~ ~ ~ i ‘ P ~ u ~ ~ ~ ~ ~ P ~ v ~ ~ P v ~ ( P u ~ p ~ ~ p ~ u ~  

From (3.9) we see that the Green function on the mass shell may be written 

(3.10) 

which is not equal to  the Feynman propagator which is the expression (3.10) without 
the term 22.  

In a similar manner, we may obtain a second wave equation by exchanging A,($)  and 
A,($) in (3.5). In this case we have 

A(p)  = - ( y  . p - m)A ,($) - m(b S + b 2 A  ,($) + b 3 A  l(f1 + b4A 2($)). 

Using the same argument as that used in the previous case, we find that we may remove 
the singular terms by multiplying A by the matrix 

q =  I + d , = X  I + d , - Z ‘  ( ’m ) (  ) 
but that 

becomes 
A = q A  

it is not possible to construct a hermitian lagrangian. The singular terms in 
cancel if we take b ,  = b,  = b,  = d ,  = - 1, d ,  = - 2 .  The wave equation 

= 0, that is, 

M g : g ;  - g ; g 3  - tmb,(g:g; + g ; g 3  - 8P’lYV - PVY”)(YuYp - g u p )  
-3 v 

2 g p Y u P P  - g ; Y U P ’ +  g:YpP”- g : Y p P P ) ) v p  = 0. 

The Klein-Gordan divisor is 

and in this case the Green function on the mass shell is 

(3.1 1) 

(3.12) 

(3.13) 

3.2. Reducible case 

We conclude this section by noting that we can derive a third equation in which the 
wavefunction is reducible, being the direct sum of the two irreducible components. 
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Putting A(;) = X:= A,($), the kernel is 

N P )  = - (Y . P- m)A($) - m(g,S+ g 2 4 ( + ) +  g3A2(+)). 
The singular terms cancel when g2  = g 3  = - 1, and the wave equation is 

{ - 5Y ’ P(g:g; - g ; g 3  - 5 . P ( g Y Y  p + g:YvY U - s:Y ‘ Y p  - g;Y’Yu) 

+ &lY”P, - g;YuP’ + g:Y ‘ P p  - g:YpP’ 
-g” p Y  ’ Po + g;YuP’ - g:Y”Pp + g:YpPp) 

+ +m(g:g; - g: €3 - mg ,(g:g;+ g:g;)14up = 0. (3.14) 

If we multiply respectively by SE!, y p y v ,  y ,pv  we obtain the subsidiary conditions 
4,’ = -4’fl 

ruYp4“p = 0 

P a Y u 4 u p  = 0 
and in this case (3.14) may be derived from a hermitian lagrangian density. The Klein- 
Gordan divisor is then 

4. Minimal electromagnetic interaction 

With the minimal coupling of the spin $field to the electromagnetic field effected by the 
substitution p p  -+ np = p r +  eA,  we must determine whether or not the wave propaga- 
tion is causal. This is done by calculating the characteristic surface of the coupled wave 
equation, to see if it lies inside or outside the light cone (Velo and Zwanziger 1969a). 
We perform this calculation in a shock-wave formalism which was applied by one of 
the authors (Madore and Tait 1973) to other interacting higher spin systems. 

For a first order wave equation, the characteristic surface is one which will support 
a discontinuity in the first derivative of the wavefunction. Let e be a smooth hyper- 
surface given in a region of space-time, where by smooth we mean differentiable of 
class V”, n 2 3 ; and let z(x’) be a real valued smooth function of x p  regular in a neighbour- 
hood U of 6, and vanishing on e. The hypersurface e divides U into two regions U +  
and U -  corresponding to  z 2 0 and z < 0 respectively. Define 5, = 8,z. 5,  is non- 
vanishing in U and normal to e. 

Consider a wavefunction 4 ( x p )  defined in U and smooth in the interior of U + and 
U - .  We suppose that 4 is continuous, but has a discontinuity in the first and possibly 
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higher derivatives across 6. Let 4 be denoted by 4 *  in the regions U*. By extending 
$* smoothly into UT, the discontinuity [d] = 4’ - 4 -  may be defined as a smooth 
function in U .  There exist uncountably many smooth functions Rfdefined in U such 
that 

For a function k“ defined in U ,  let L,, be its restriction to D .  Define k ,  f by 
[4] = zL++zzJ;. (4.1) 

k = RI,, f =&. 
From (4.1) we can calculate the discontinuities across CT in the first and higher derivatives 
of 4 in an arbitrary direction, for example, 

Using (4.2) we investigate equation (3.14) for the reducible wavefunction derived 
from a hermitian lagrangian density. After the antisymmetry property has been derived, 
this equation reduces to 

R”’ = - 5 .n4lrV - 3 y . n(y’y& - y ” ; t , g ~ ) ~ “ p  

+ 8ypn,gi - y’n,g; - npyy ,g i  + nvyag;)4up + m4”’ = 0. (4.3) 

Contracting with y p y v ,  n,y, we obtain the following : 

d = y P y v 4 ” ’  = 0 

d’ = mn,,yv~pv-  eFppCPV@” = 0 

and from the expressions [R”’], [dud],  [d’], we get 

- % .5k”  - b . t ( y ” y &  - y ” y P g 3 k u P  + W t 4 , g i  - Y’t& - 5’yugi + t V Y y , g ~ ) k u P  0 (4.4) 

~ o y v k ” v  = 0 (4.5) 

5,,yvkpv = 0. (4.6) 

5,k” = ypk” = 0. (4.7) 

Contracting (4.4) with ys  and 5 ,  and using (4.5), (4.6) yields, assuming t2 # 0, 

(4.7) in (4.4) gives immediately that k”’ = 0. This means that a discontinuity k’’ can 
only exist across the light cone, that is, (4.3) has light cone characteristics so that the 
maximum propagation velocity is the speed of light. This result is easily understood 
when we realize that the constraint d is unaffected by the interaction, while d’ contains 
no derivative terms other than the one which appears in the free field case. Since there 
are no derivative terms in the interaction, it follows that the characteristic surface 
remains the light cone, where the discontinuity obeys the equation 
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Appendix 

Using equation (2 .3) ,  the Casimir operator W z  is calculated to be 

From equations (2 .7) ,  (2 .8) ,  (2.9), ( 2 .  l ) ,  the following projection operators have been 
calculated : P($), P($), P(4) ; A ,($), A&), A ,(&, A 2 ( 4 ) .  We have 

m:; = &:g; + g;g:) - f g p v g u p  - &g:YVrp + g;Y’Yu + g:YpYp + g;Y vYu) 
1 2 

+ - - r ( g p v P u P p  + gupP’P’) - 5p2(g;P’Pu + g:PvP, + g;PvPu + g:PpPp) 

+10p2(g;Y’Pu - g;YUP” + g:YvPp 

5P 
1 

- g:YpPv + g;YvPu - g;YuPv+ g:YpPp - g:YpPp)Y * P 

+-+YVYpP’Pu + YVYUP’PP +YPYaPVPp + YpYpPvPu)  

+ - A Y P P P P V P U  + YuP’PVPp - YVP”uPp - Y”PVPaPp)Y . P +Y$P’P’PUP, 

1 
1OP 

5 P  5P 
1 2 
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1 2 
3 P  3 P  

+ Y & Y p P ’ P V P a  + Y0P’PVPp - Y “P’PaPp - ’u”lPWPaPp)Y . P + --;iP’P”PaPp 
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